Use of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model. Part I: Experiments with Synoptic-Scale Data

1990 ◽  
Vol 118 (6) ◽  
pp. 1250-1277 ◽  
Author(s):  
David R. Stauffer ◽  
Nelson L. Seaman
2010 ◽  
Vol 10 (6) ◽  
pp. 1129-1149 ◽  
Author(s):  
M. Milelli ◽  
M. Turco ◽  
E. Oberto

Abstract. The forecast in areas of very complex topography, as for instance the Alpine region, is still a challenge even for the new generation of numerical weather prediction models which aim at reaching the km-scale. The problem is enhanced by a general lack of standard observations, which is even more evident over the southern side of the Alps. For this reason, it would be useful to increase the performance of the mathematical models by locally assimilating non-conventional data. Since in ARPA Piemonte there is the availability of a great number of non-GTS stations, it has been decided to assimilate the 2 m temperature, coming from this dataset, in the very-high resolution version of the COSMO model, which has a horizontal resolution of about 3 km, more similar to the average resolution of the thermometers. Four different weather situations have been considered, ranging from spring to winter, from cloudy to clear sky. The aim of the work is to investigate the effects of the assimilation of non-GTS data in order to create an operational very high-resolution analysis, but also to test the option of running in the future a very short-range forecast starting from these analyses (RUC or Rapid Update Cycle). The results, in terms of Root Mean Square Error, Mean Error and diurnal cycle of some surface variables such as 2 m temperature, 2 m relative humidity and 10 m wind intensity show a positive impact during the assimilation cycle which tends to dissipate a few hours after the end of it. Moreover, the 2 m temperature assimilation has a slightly positive or neutral impact on the vertical profiles of temperature, eventhough some calibration is needed for the precipitation field which is too much perturbed during the assimilation cycle, while it is unaffected in the forecast period. So the stability of the planetary boundary layer, on the one hand, has not been particularly improved by the new-data assimilation, but, on the other hand, it has not been destroyed. It has to be pointed out that a correct description of the planetary boundary layer, even only the lowest part of it, could be helpful to the forecasters and, in general, to the users, in order to deal with meteorological hazards such as snow (in particular snow/rain limit definition), or fog (description of temperature inversions).


2017 ◽  
Author(s):  
Orren Russell Bullock Jr. ◽  
Hosein Foroutan ◽  
Robert C. Gilliam ◽  
Jerold A. Herwehe

Abstract. The Model for Prediction Across Scales – Atmosphere (MPAS-A) has been modified to allow four dimensional data assimilation (FDDA) by the nudging of temperature, humidity and wind toward target values predefined on the MPAS-A computational mesh. The addition of nudging allows MPAS-A to be used as a global-scale meteorological driver for retrospective air quality modeling. The technique of analysis nudging developed for the Penn State / NCAR Mesoscale Model, and later applied in the Weather Research and Forecasting model, is implemented in MPAS-A with adaptations for its unstructured Voronoi mesh. Reference fields generated from 1° × 1° National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data were used to constrain MPAS-A simulations on a 92–25 km variable-resolution mesh with refinement centered over the contiguous United States. Test simulations were conducted for January and July 2013 with and without FDDA, and compared to reference fields and near-surface meteorological observations. The results demonstrate that MPAS-A with analysis nudging has high fidelity to the reference data while still maintaining conservation of mass as in the unmodified model. The results also show that application of FDDA constrains model errors relative to 2 m temperature, 2 m water vapor mixing ratio, and 10 m wind speed such that they continue to be at or below the magnitudes found at the start of each test period.


2018 ◽  
Vol 11 (7) ◽  
pp. 2897-2922 ◽  
Author(s):  
Orren Russell Bullock Jr. ◽  
Hosein Foroutan ◽  
Robert C. Gilliam ◽  
Jerold A. Herwehe

Abstract. The Model for Prediction Across Scales – Atmosphere (MPAS-A) has been modified to allow four-dimensional data assimilation (FDDA) by the nudging of temperature, humidity, and wind toward target values predefined on the MPAS-A computational mesh. The addition of nudging allows MPAS-A to be used as a global-scale meteorological driver for retrospective air quality modeling. The technique of “analysis nudging” developed for the Penn State/National Center for Atmospheric Research (NCAR) Mesoscale Model, and later applied in the Weather Research and Forecasting model, is implemented in MPAS-A with adaptations for its polygonal Voronoi mesh. Reference fields generated from 1∘ × 1∘ National Centers for Environmental Prediction (NCEP) FNL (Final) Operational Global Analysis data were used to constrain MPAS-A simulations on a 92–25 km variable-resolution mesh with refinement centered over the contiguous United States. Test simulations were conducted for January and July 2013 with and without FDDA, and compared to reference fields and near-surface meteorological observations. The results demonstrate that MPAS-A with analysis nudging has high fidelity to the reference data while still maintaining conservation of mass as in the unmodified model. The results also show that application of FDDA constrains model errors relative to 2 m temperature, 2 m water vapor mixing ratio, and 10 m wind speed such that they continue to be at or below the magnitudes found at the start of each test period.


2006 ◽  
Vol 134 (2) ◽  
pp. 722-736 ◽  
Author(s):  
Fuqing Zhang ◽  
Zhiyong Meng ◽  
Altug Aksoy

Abstract Through observing system simulation experiments, this two-part study exploits the potential of using the ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation. Part I focuses on the performance of the EnKF under the perfect model assumption in which the truth simulation is produced with the same model and same initial uncertainties as those of the ensemble, while Part II explores the impacts of model error and ensemble initiation on the filter performance. In this first part, the EnKF is implemented in a nonhydrostatic mesoscale model [the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)] to assimilate simulated sounding and surface observations derived from simulations of the “surprise” snowstorm of January 2000. This is an explosive East Coast cyclogenesis event with strong error growth at all scales as a result of interactions between convective-, meso-, and subsynoptic-scale dynamics. It is found that the EnKF is very effective in keeping the analysis close to the truth simulation under the perfect model assumption. The EnKF is most effective in reducing larger-scale errors but less effective in reducing errors at smaller, marginally resolvable scales. In the control experiment, in which the truth simulation was produced with the same model and same initial uncertainties as those of the ensemble, a 24-h continuous EnKF assimilation of sounding and surface observations of typical temporal and spatial resolutions is found to reduce the error by as much as 80% (compared to a 24-h forecast without data assimilation) for both observed and unobserved variables including zonal and meridional winds, temperature, and pressure. However, it is observed to be relatively less efficient in correcting errors in the vertical velocity and moisture fields, which have stronger smaller-scale components. The analysis domain-averaged root-mean-square error after 24-h assimilation is ∼1.0–1.5 m s−1 for winds and ∼1.0 K for temperature, which is comparable to or less than typical observational errors. Various sensitivity experiments demonstrated that the EnKF is quite successful in all realistic observational scenarios tested. However, as will be presented in Part II, the EnKF performance may be significantly degraded if an imperfect forecast model is used, as is likely the case when real observations are assimilated.


1996 ◽  
Vol 124 (5) ◽  
pp. 1018-1033 ◽  
Author(s):  
Frank H. Ruggiero ◽  
Keith D. Sashegyi ◽  
Rangarao V. Madala ◽  
Sethu Raman

Sign in / Sign up

Export Citation Format

Share Document